I guess I should warn that these Project Euler posts have spoilers , in case you want to try the problems yourself ☺. My Scala solution to problem 8 :
val input = "73167176531330624919225119674426574742355349194934" +
"96983520312774506326239578318016984801869478851843" +
"85861560789112949495459501737958331952853208805511" +
"12540698747158523863050715693290963295227443043557" +
"66896648950445244523161731856403098711121722383113" +
"62229893423380308135336276614282806444486645238749" +
"30358907296290491560440772390713810515859307960866" +
"70172427121883998797908792274921901699720888093776" +
"65727333001053367881220235421809751254540594752243" +
"52584907711670556013604839586446706324415722155397" +
"53697817977846174064955149290862569321978468622482" +
"83972241375657056057490261407972968652414535100474" +
"82166370484403199890008895243450658541227588666881" +
"16427171479924442928230863465674813919123162824586" +
"17866458359124566529476545682848912883142607690042" +
"24219022671055626321111109370544217506941658960408" +
"07198403850962455444362981230987879927244284909188" +
"84580156166097919133875499200524063689912560717606" +
"05886116467109405077541002256983155200055935729725" +
"71636269561882670428252483600823257530420752963450"
val digits = input . map ( _ . asDigit ). toArray
def multiply ( index : Int ) = digits . slice ( index , index + 5 )
. foldLeft ( 1 )( _ * _ )
val multiples : Stream [ Int ] = {
def rec ( n : Int ) : Stream [ Int ] = Stream . cons ( multiply ( n ),
if ( n & gt ; digits . length - 5 ) Stream . empty else rec ( n + 1 ))
Stream . cons ( mult ( 0 ), rec ( 1 ))
}
println ( Iterable . max ( multiples ))
For convenience, this specifies the input as a string, then uses RichChar.asDigit
to create a corresponding array of integers. The multiply
function uses left fold to multiply together sequences of five digits. The multiples
value is a stream (lazy list) of the multiples of all groups of five consecutive digits from the input. And finally, the Iterable
object provides a convenient method to find the maximum value in any Iterable
containing Orderable
things.
There are comments .
Proudly powered by Pelican , which takes great advantage of Python .
The theme is by Smashing Magazine , thanks!